Glossary
k-Shingles
Fundamentals
Models
Techniques
Last updated on January 25, 20249 min read
k-Shingles

Have you ever pondered how search engines identify similar content, or how plagiarism detectors work their magic? At the heart of these technologies lies a fascinating concept: Jaccard Similarity and k-Shingles.

Have you ever pondered how search engines identify similar content, or how plagiarism detectors work their magic? At the heart of these technologies lies a fascinating concept: Jaccard Similarity and k-Shingles. Imagine you have two sets of data, and you wish to know how closely they resemble each other. This is where Jaccard Similarity, a statistical measure, comes into play, offering a mathematical approach to understanding similarity and diversity. Now, couple that with k-Shingles, a technique in text mining that transforms chunks of text into comparable sets. The blend of these two methodologies provides a powerful tool for various applications, from SEO to bioinformatics.

Section 1: What is Jaccard Similarity and k-Shingles?

The Jaccard similarity of sets S and T is |S ∩ T| / |S ∪ T|, that is, the ratio of the size of the intersection of S and T to the size of their union. You can denote the Jaccard similarity of S and T by sim(S, T).